Structure Flexibility Impacts on Robust Active Vibration Isolation Using Mixed Sensitivity Optimisation

نویسنده

  • Claes Olsson
چکیده

Active vibration isolation from an arbitrarily, structurally complex receiver is considered with respect to the impacts of structure flexibility on the openand closed-loop system characteristics. Specifically, the generally weak influence of flexibility on the open-loop transfer function in case of total force feedback, in contrast to acceleration feedback, is investigated. The open-loop system characteristics are analysed based on open-loop transfer function expressions obtained using modal expansion and on modal model order reduction techniques. To closely demonstrate and illustrate the impacts of flexibility on the closed-loop system performance and stability, a problem of automotive engine vibration isolation from a flexible subframe is presented where the neglected dynamics are represented as an output multiplicative model perturbation. A physical explanation to why the contribution of flexibility to the open-loop transfer function could be neglected in the case of total force feedback in contrast to acceleration feedback is given. Factors for an individual eigenmode to not significantly contribute to the total force output are presented where the deviation of the mode direction relative to the actuator force direction is pointed out as a key one in addition to modal mass and damping coefficient. In this context, the inherent differences between model order reduction by modal and by balanced truncation are being stressed. For the specific automotive vibration isolation application considered, the degradation of robust performance and stability is shown to be insignificant when obtaining a low order controller by using total force feedback and neglecting flexibility in the design phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact and Efficient Active Vibro-acoustic Control of a Smart Plate Structure

An effective wide band active control law through one kind of the Dynamic Vibration Absorber (DVA) is proposed and studied in this paper. With the help of mechanical impedance method, active DVA control law is formulated based on the passive mechanical model. The electrical DVA can generate multi-mode active damping to the structure. The host structure is an aluminum plate and acceleration sign...

متن کامل

H∞ Robust Controller Design and Experimental Analysis of Active Magnetic Bearings with Flexible Rotor System

H∞ controller for active magnetic bearings (AMBs) with flexible rotor system was designed in this paper. The motion equations of AMBs and flexible rotor system are built based on finite element methods (FEM). Weighting function matrices of H∞ controller for AMBs are studied for both the sensitivity and the complementary sensitivity of H∞ control theory. The simulation shows that the H∞ control ...

متن کامل

Semi-Active Pulse-Switching SSDC Vibration Suppression using Magnetostrictive Materials

One of the best vibration control methods using smart actuators are semi-active approaches which are as strong as active methods and need no external energy supply such as passive ones. Compared with piezoelectric-based, magnetostrictive-based control methods have higher coupling efficiency, higher Curie temperature, higher flexibility to be integrated with curved structures and no depolarizati...

متن کامل

Robust Active Vibration Isolation: A Multivariable Data-Driven Approach

Active vibration isolation is essential for a large range of high precision motion systems in industry. This paper aims to develop a framework for high performance robust vibration isolation by explicitly addressing multivariable flexible dynamical behavior. A framework is proposed that connects identification and control. In addition, a new data-driven uncertainty modeling procedure is used th...

متن کامل

Active Suspension vibration control using Linear H-Infinity and optimal control

In this paper, the 1/4 vehicle model have been simulated. The vehicle body acceleration using optimal control has been optimized. The vehicle ride comfort is achieved by using robust control, and it has been compared with optimal control. The active suspension can help the vehicle to have a good dynamic behavioral. In this paper, two degrees of freedom dynamic vibration model of a general ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005